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FRACTURE PROBLEMS IN POWER LAW VISCOELASTIC MATERIALS

It is intended to continue the fracture work by examining the Mode
III crack in an infinite sheet. Moreover, a very general moduli
description will be adopted with the Standard Linear Solid (SLS) and
the Power Law (PL) as special cases. The Riemann-Hilbert approach
utilized in the original work can be as effectively utilized here. Though
the last step of actually producing exact, global closed-form expressions
for the field variables is unlikely, it is possible to extract stress
intensity factors and near-tip behavior! It should be noted that the
Weiner-Hopf approach is inadequate for this problem and that, of course,

correspondence principles are inapplicable.

It is also proposed to examine the debonding of an elastic plate on
a visoelastic foundation as a combination of lo~ g, fracture, and
lamination. The physical picture would be " ad moving along a plate
and a semi-infinite crack (whose tip might be in front of the load!)
moving with it. The viscoelastic media will be very general again.
Coupled field equations for the plate and the halfspace must be solved.
The quantities of interest are the position of the crack tip (and its
stability in a subsequent analysis), the shape of the crack, and its
stress intensity factor. There are also questions regarding the

existence of a solution for all load speeds.

Two papers resulted from the research performed under this con-
tract:
(1) Nachman, A. and Walton, J.R.: Energy Release Rate Calculations
for Interface Edge Cracks Based on a Conversation Integral.

J. Intern'tl. Solids and Structures, in press.

(2) Nachman, A. and Walton, J.R.: Energy Release Rate Cal-

culations for an Interface Mode III Edge Crack Based on a

NOTICE: This document was prepared under the sponsorship of the Air
Forca. Neither the U.S. Government nor any person acting on behalf of
the U.S. Government assumes any liability resulting from the use of the
information contained in this document.




Paper submitted to J. Intern'tl. Solids
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Conservation Integral.

and Structures.

These papers are contained in the Appendix of this report.
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ENERGY RELZASE RATE CALCULATIONS TOR INTERFACE ZDGE CRACXKS
BASED ON A CONSERVATION INTEGRAL

A. Nachman and J. 2. Walton®

Introduction

In a recent paper, L. B. Freund [1] demonstrated the usefulness of
the M-integral conservation law in the determination of stress intensity
factors for 2-dimensional cracks in homogeneous elastic bodies with certain
geomectric properzies. Tor a detailed discussion of the M-integral and its
special features that permit the applications given by Freund, the reader
is referred to that paper and the references contained therein. Liberal
use will be made in this paper of many of the results derived by Freund.

What is demonstrated here, is that the M-integral cam be used to deter-
mine the energy release rate for certain interface cracks inm much the same
way as for cracks in homogeneous bodies.

Three observations are needed for this application. The first, due
to Smelzer and Gurtin [2], is chat the J-integral on a small arc about an
interface crack is equal to the emergy release rate, as in the homogeneous
case. One difference for cracks in homogeneous bodies is that the J-integral
may also be related to the stress intemsity factor, while for interface cracks,
the J-integral is related to a composite stress intensity factor which
has dubious utility. (See Smelzer and Gurtin [2].) The second observation
involves the nature of the far stress field for bonded dissimilar elastic
wedges, and appeals to the analysis presented by Bogy [3] for bonded
dissimilar elascic quarter planes. The third observation is that the
integrand of the M-integral i{s continuous across bonded interfaces lying

along radial lines of the chosen coordinate system. i
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Statement and Analysis of the Proble=m

We present here 3n extension of the result obtained by Freund for the
elastic half-space with an edge crack whose cOTneIs ate subiected to norxal
and shear point loads. Specifically, the M-integral conservation law is
applied to the 2-dimensional plane strain problem of two infinite isotropic
elastic wedges with opening angles w' and w', respectively, and with
different elastic properties (exhibited through E', V' and E",v", where
E and Vv denote Young's modulus and Poisson's ratio), which are bonded
together along one edge except for a crack of length 2 exteanding from
the apex, and whose corners are subjected to a system of aormal and shear
point loads, givea by P', Q', P" and Q'". (See Fig. l.) An application
of the M-integral comsarvation law yields a relation among the parameters
P, Q, E, v, 1 and the energy release rate of the crack. (Symbols
vit sut primes refer to both materials.) It is clear that the com-
plexity of the problem precludes the determination of the energy release
rate by first solving the corresponding boundary value problem.

The M-integral is given by

M= I(Wnixi ~ Tkuk’ixi)ds (1)
C

where W 1is the elastic energy demsity, v, 1is the unit normal tc C

i
(which we take to be direcred to the right when C 1is traversed in a given

direction) and Tk is the traction acting on the material to the left of

C. The stresses Uij = cji are related to the elastic energy W and the i

stra.as T,, = (

g " Cag g0 W

, where u denote the

911°¢,3 1

dispiacements. The traction Tk is given by ‘1‘k - cikni' The elastic
body is assumed to be in equilibrium without body forces, ie cij 3 =0, ;
and the stress-stirain relation is given by cij = 3%3— . The conservation

4

S

law “or M is that M4 = 0 whenever ( is a closed path surrounding a

siz -annected region in the ody.
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Cousider the integral

M=M o+

B [ (o gxg = Ty, g%q)9s
I
- ' ] - L} L 17 - "o, 1t
f (Wnjxy = Tedg,a%0ds _* f (Wagx; = T, 18904
r' I‘"
where the contours ' and [" are as indicated in Fig. 1 and T = 7' _ I".

It follows easily from the discussion by Freund, that there is zero contri-

bution to M from the parts of [ along the crack faces and the outside

edges of the wedge. Moreover, the value of M ou the vanishingly swmall

arc around the crack tip is 15% , where P(2) is the potential energy of

d

the wedge with a crack of length 4.

(See Rice {4] and Smelzer amd Gurtin [2].)

Hence, on this swall arc, M 1is the product of the crack length and the

rate of decrease of the emergy with respect to crack length.

The contributicns to M' and M" from the small arcs around the

corner poilants of the wedge follow from a general result derived by Freund

for an infinite elastic wedge with corner loads. In particular, from

the swall cormer arc in I' ‘we obtain the contribution

and from [

)
_Fe
w' - sinw' ’

< Wl -
R

"2
Q- v,.z)E F,

E" wll + Siﬂm"

vhere, employing Freund's notatioan,

o - sinm"_] »
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F ' = -P'cos(w'/2) - Q'sin(w'/2),
F' = P'sin(w'/2) - Q'cos(w'/2), ‘
F" = -P'cos(u"/2) - Q"cos(x"/2), ‘i
Ft" = -P'"sin(w'"/2) + Q"cos(w'"/2).

-t

On the bond line, Xy = g, X > 2, che contributions to M from I and

-0y

cancel, since, amoung the stress and displacement components, only 28

is discontinuous across the interface, and on that line nixi = 0 (because
the interface is radial) and T u x. = (u g,, + 9 ) Xq e
; ) Wi, 11 T U119 T4 1900

It remains to determine the contribution from the large arc for which
it suffices to know the far field solution for two wedges bonded together
with no crack and wizh apex loads P' + P" and Q' - Q". From the analysis

presén:ed by Bogy (3] for two bonded quarter planes, it is clear that the

far field is radial. More precisely, if the elastic fields are represented

with respect to polar coordinates (r,3), then L and ¥ g vanish

for large r wuniformly in 0, whereas rqtr does not. Consequently, on h

the large arc we may assume Gra and 096 are zero. It is easy to see

that in this case, to satisfy the equilibrium equations and the compata-

bility equation, we must take for the stress field

G . # _"A eosd + B sind
Y r

» @ =g

6 = Q. (2)

86

The four constants A', B', A" and B" =may be calculated from the four

conditions

uglz, 8+ 0-) = 4g(r,9 = 04), (3) ]

B(r,9 0 <) = a9 0w, O)




I "
[ vg! _f(r,3)cos(3)d9 + { o7 _(r,8)cos(2)de = -(®' + P, (3
—Q' ’ 0
ro wll

o' (r,¥)sin(2)d¢ + f ro:r(;,a)sin(e)de = (Q' - QM. (6

(

J] Y

© 0
Equations (3) and (4) assert continuity for the displacements on the bond
line, while equations (5) and (6) express the equilibrijum of tractions on
the wedge —w' <9 <w", 0 < r <R, where R is the radius of the

large arc. A simple calculation shows that (35) and (6) reduce to

A'(l-cos 2w') - B'(2w'-sin 2uw') - A"(l-cos ") - B"(2w"-sin 2w") = 4(Q' - QM) (7)

2N

-A"(2w' + sin 2w') + 3'(l-cos 2w') - A"(2uw"+sin 20") - B"(l-cos 2w") = <4(®' + P"). (3}

Substituction of (2) into the polar form of the stress-strain law
followed by the application of (3) and (4) yields the relations
B'/B" = A" /A" = (L +a)/(1 -a), (9
where o 1s one of the two Dundurs bi-material parameters given by
(See 3ogy [3].)

E'(1 - v"z) ~E"(1 - v'z)
E'(1 - \)"2) + E"(1 - \)12)

for plane strain

E' - E"

B T E" for generalized plane stress.

11 is oow an easy matter to solve equatioms (7), (8) and (9) for 4A', B', A"

-

and B8". In particular, we obtain

A' = (a(Q' - Q" + (@' + PG/

B' = (-a(B’ + 2" - c(Q' ~ QM) (4/d)

e -
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l-c

where a = (1 - cos 2u') - ( Y(1 - cos 2u™)

1+ ;

i

l -2 j

= ! - ! - e T" LU, i (! P

b = -Quw sin 2w'") (l T a)( W sin 2w'") s
¢ = -(2u' + sin 2u') - (22 (2" + sin 25"
l+¢. :

d = az - be.

B

A" and B" may now be calculated from (9).

As observed by Freund, for the stress state (2), the integrand of
M 1is i
2 i
1 (1-v) 2 :

- u - - =

ey s Nk, T T T T Vo i
3
1

Cousequently, the contributiomn to M from the large arc is

T R I T PO S i

'2 ro - "2 1"
- %-32;3E¥——l J (A'cosd + B'sing)2de - %-Sl——g¥——l Jw (A"cos® + B"sind)d6
0
-m'

' 2 "
- - %-SL-:—X—l— [ IO(A'cose + B'sine)zde + (i ; a ) Im (A'cos8® + B'sind)dE] (10)
@ o

-Ql'

2
R e S A ;.V ) (b(p' + P")2 + c(Q' - Q")2 + 2a(P' + P")(Q' - QM) (2/4). (1)

iine (10) follows from (9) and the observation that

- n? - 02
S&-Eﬁz-_) - (i t g) (1 E? ); whereas, line (11) is derived by simple but

tedious algebraic manipulations.




Combining the contributions to M from the large arc, the two small
arcs at the apex and the arc around the crack tip and appealing to the
conservation law, we obtain

2
:—g: = Q_;_'\)_)_ ["(b(?' + P")z + C(Q' - Q")z + Za(P' + PN) (O,' - Q"))(Z/d)

A
(12)
l 12 1] - L} 12 A 3 ] [} ] ] 12 : 2 1
+ 3(P'""(2w' - sin ') +Q (2@ + sin 2w') + 2P'Q'(cos 2w' -~ 1))/ (w'"-sin"u")

+ ;(i + a)(P" (2w'"-sin 2w") + Q" (2w" + sin 2w") + 2P"Q"(cos Zu"—l))/(u" ~sin u")]

An important special case qf (12) is that of two bonded dissimilar quarter

planes with an edge interface crack. Setting w' = w" = 7/2 in (12) yields

' 2
iF L) e eie @ -0 - S @ e @ - e A+ e/t
v2(@? e dESe? 4 @F ¢ dEDHeD -2 @+ EEYremy /e 1. A

-Q

It should be noted that if P' =P" =P, Q' = Q" 2 Q and a = 0, then

(13) reduces to the result obtained by Freund for identical quarter plames.
Of course, when & = 0, the respouse of the bonded quarter planes is the same
as for a homogeneous half-space; as described by Dundurs [5], the two quarter
planes are "consonant in tension parallel co the interface.”

Another interesting case in (12) is when a = +1. Due to symmetry we consider

only a = -1 corresponding to which (12) becomes




g S AR

i 2

- f i%% - ﬁl_iF¥_-l [p'z(zw'-sin w'y + Q'Z(Zw'+sin w') + 22'Q' (cos Zu'-l))/(w'z-sinzg'
-
%

It should not be surprising that in (14) only P' and Q' appear, since

a = -1 corresponds to E" = o,

It should also be noted that for P' = P" =P, Q' = Q" =2 Q and
w' = w" = 7/2, the level curves of % %% in the (P,Q)-plane are eilipses
(straight lines if o = Q) centered at (0,0). From this we may conclude

as did Freund, that crack extension may result when the unloading of P and

Q occurs along certain paths in the (P,Q)-plane. Moreover, this obviously

is the case also in (14) with w' # #/2. It is evident in (12),
that in general, regardless of the values of w' and w" and a, this
phenomenon is to be expected.

The authors wish to acknowledge with much appreciation several helpful

and encouraging discussions on this problem with Professor L. 3. Freund.
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ENERGY RELEASE RATE CALCULATIONS FOR AN INTERFACE
MODE III EDGE CRACK BASED ON A CONSERVATION INTEGRAL

BY

A. Nachman! and J. Walton?

ABSTRACT

The M-integral is applied to the calculation of energy

release rates for interface edge cracks of the Mode III type:

specifically, for an edge crack along the interface between
two elastic wedges of different opening angles and dissimilar
elastic properties, and that is subjected to point loads at
the apex, a relation is derived along the length of the crack,
the energy release rate of the crack, the applied loads, the

wedge angles and the material parameters.

Department of Mathematical Sciences, 0ld Dominion University,
Norfolk, Virginia 23508. Supported in part by AFOSR Contract
F49620-79-C-0076.

Department of Mathematics, Texas A&M University, College
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In this note we continue the work of [1], wierein

the M-integral was used to calculate energy release

rates for interface edge cracks of the Mode I and Mode II

tyves. However, here we turn our attention to a Mode III
interface edge crack as might arise in the torsion of two welded rods.
The physical scenario is identical to [1] save for the

loading at the wedge apexes. In this investigation we

impose toint shear stresses (631) of magnitudes Pl and PZ’
See Figure 1. This loading will generate only out~cf-plane

displacements, u3(x, y). Moreover, u3(x, y) is a harmonic

function (or;“méfé'éfééiéél§? uél)(x, y) and ugz)(x, v)

are each harmonic functions in their respective wedges).

We take the same path for the M-integral as in [1].
As before, radial lines contribute nothing, the small
circle around the crack tip contributes lg% (2], the inter-
face contributions cancel and we must only deduce the
contributions from the arcs near the tips and from the
large arc.

Since the edges near each tip are free, an analysis
of the near-tip field is equivalent to the analysis of a

single-material wedge subject to a shear-stress point load.

Clearly the displacement field for such a problem is A j
u§2) = A(Z)ln(:)qis(Z)a for the top wedca, say. }
1

15




The contribution to M from the arc near the top

tip is then

0
(2) (2) . {(2) . (2} (2),
[w“r{(c3l cos 8§ + G5 Sin 3)u3li X 3 c3i_u3’irde
(2) (2) _.
{(2) (2) (2) _. (2)_ u FA sin 9 +
where g(2) = B [ cos & - 83'“'sin 3] and Tap = 7
31 r

3(2)

cos 3]. A simple calculation shows that the integral

wll
equals u(Z)w" {[5(2)]2 - EA(z)}Z}. Since f rcéi) 48 = -?2cos {
2 Q
w" w"
and f rcgi)de = -stin (w") we have that A(Z) = -PZCOS(f )
0 2 2u(2)w"

and B(2) - -stin(g )« Conseguently, the contribution to M
zu(j)w”

from both near-tip arcs is

- pg cos w" pi cos w' .
(3) 1 (1)
8u w" 8u W

The contribution from the large arc comes from the
analysis, as in (1], of the far-field solution for two
wedges bonded together with no crack. Eere the displacement
field in each wedge is likewise of the form uy = C ln(zr) + DS.
Since the shear stresses corresponding to the above

displacement field are

e+ ane o

ot o ant mt rm sy




- c _ -
°31 u(; cos 8§

= g i
032 u(r sin 8 + -

it follows that continuity of uq and I3, 2t the interface

is assured when
C(l) = C(2)

(D pL) (2 5(2)

We still need two more equations and these come from, as

in (1], a force balance. Thus

W

d .
(1) (2) o
f royy’ 48 + J ro de = -(P; + P,)

31 2

- 0

"

0 (1 Yo (2)
J 'ro32 48 + IO ro32 d8 = 0

-

(2a,b) and (3a,b) we get




(L), (L) (2)

' [ . "
sinw + u sin w ]

+ u(l)D(l)Ecos w' ~cosw'] = -(Pl +P,)

_ (Sa,b)
C(l)Eu(l)(cés w' - 1) + u(z)(l - coOSs w")]

+ u(l)D(l)Csin w + sinw'] =0

Consequently, the contribution to M from the large arc is

0 w
e f (ref 32 | pM g2 - (2 [ (re(2)92 _ p(2) 12344

2 - - 2 0

e T e R b B e AL T

We content ourselves with exhibiting the particulars
of the case w ,= w = w. In this case &5ab)., together with

the previous calculations, serves to give

gg% . —Cosw Pi + Pg
: w8
(1) (2)
¥ o (6}
2
. w(Pl + Pz) ‘- (1 - cos w)2(‘1(2) - u(l))2 : 1
2™+ 1) sinbe au Dy gty

- 18




We assume w/0 l.o.g. that u(l) > u(z) and then some algebra

will show that the level curves of (6) are rotated ellipses.

Thus, again, crack extension may result when the unloading

of Pl and P2 occurs along certain paths in the (Pl, Pz) plane.
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